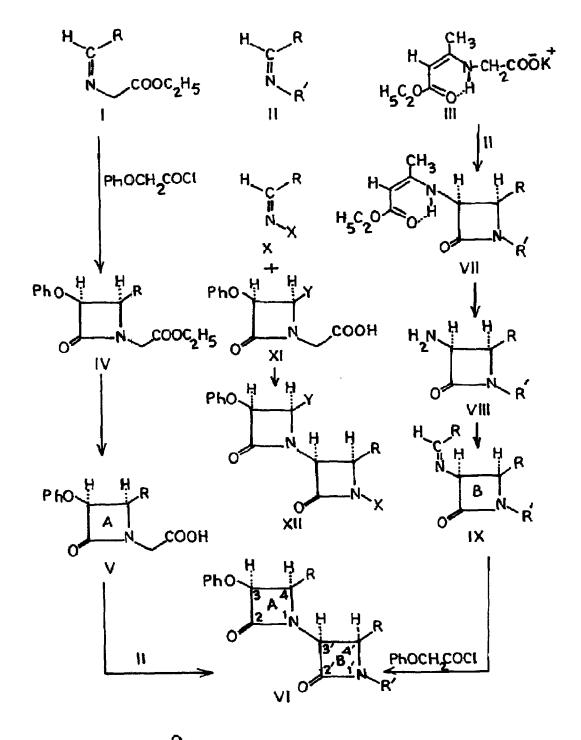
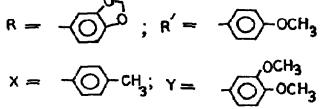
0040-4039/80/0815-3295802.00/0

Tetrahedron Letters Vol. 21, pp 3295 - 3298 © Pergamon Press Ltd. 1980. Printed in Great Britain

## CONVERSION OF SOME MONOCYCLIC $\beta$ -LACTAMS

## INTO NOVEL DI-B-LACTAMS.

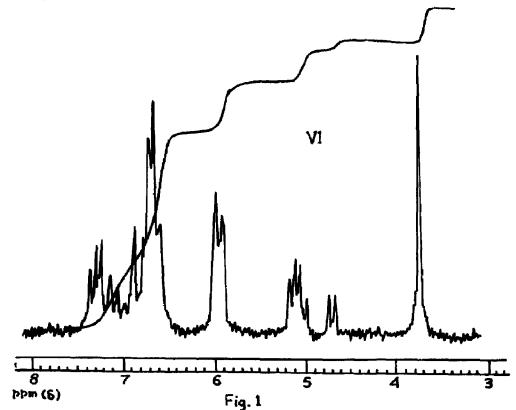

S.D. Sharma\*, P.K. Gupta, (Miss) J. Bindra and (Miss) Sunita Department of Chemistry, Panjab University, Chandigarh-160014, India.


Abstract: Monocyclic  $\beta$ -lactams (V & XI) carrying a carboxy function have been used to annelate the Schiff bases (II & X) using POCl<sub>3</sub> in the presence of triethylamine to obtain the di- $\beta$ -lactams (VI & XII). Alternately, (VI) could also be prepared by annelation of the Schiff base (IX) derived from the - $\alpha$ -amino- $\beta$ -lactam (VIII), with phenoxyacetyl chloride.

During the course of a project towards the synthesis of  $\beta$ -lactam antibiotics, we prepared several monocyclic  $\beta$ -lactams through the annelation of imines with suitable acid components using POCL<sub>3</sub> method.<sup>1,2</sup> The presence of free carboxy group is considered to be essential for antibacterial activity. To incorporate this function into monocyclic  $\beta$ -lactams, we discovered<sup>3</sup> an elegant use of glycine to prepare the Schiff base components such as (I). Reaction of (I) with phenoxyacetylchloride in the presence of triethylamine resulted in the  $\beta$ -lactam (IV) in high yield. Stereochemistry of this  $\beta$ -lactam was found to be dis from the value of coupling constant between C<sub>3</sub>-H and C<sub>4</sub>-H (J = 5.00 Hz). Saponification of a  $\beta$ -lactam ester usually leads to cleavage of  $\beta$ -lactam ring. However,(IV) could be easily converted to the acid  $\beta$ -lactam (V) under mild basic conditions<sup>4</sup> (0.1 N NaOH in acetone) without any harm to the  $\beta$ -lactam ring.

Besides antibacterial potential 5-7, monocyclic  $\beta$ -lactams have been converted to several fused ring  $\beta$ -lactams<sup>8-10</sup>. In the present communication, we wish to report the first example of the conversion of monocyclic- $\beta$ -lactams (V & IX) into a novel di- $\beta$ -lactam (VI) involving two different routes (see schemes). The crucial step in first approach is the use of the  $\beta$ -lactam (V) itself as an acid component to annelate the Schiff base (II) using POCl<sub>3</sub> method to prepare the di  $\beta$ -lactam (VI) in 55% yield, m.p. 245-46°C IR: 1755 cm<sup>-1</sup> ( $\beta$ -lactam C=0).

The 90-MHz mar spectrum (Fig. I) of the di $\beta$ -lactam (VI) exhibited the  $\beta$ -lactam protons at § 4.72 as a doublet (J = 5.5 Hz; 1H) and two closely placed doublets at 5.1 (J = 5.5 Hz; 3H). These values of the coupling constant reveal cis stereochemistry in both the  $\beta$ -lactam rings (A & B). To further confirm the stereochemistry, the di- $\beta$ -lactam (VI) was alternatively prepared through the second approach in which the  $\beta$ -lactam ring (B) with a cis-stereochemistry was constructed first starting from glycine derivative<sup>2</sup> (III).






The compound (III) was condensed with Schiff base (II) using POCL<sub>3</sub> method to obtain the enamino- $\beta$ -lactam (VII) which was then transformed to the  $\ll$ -amino- $\beta$ -lactam (VIII) under mild acidic conditions. Stereochemistry of this  $\beta$ -lactam was found to be cis by its PMR spectrum in which C<sub>3</sub>-H and C<sub>4</sub>-H appeared as two doublets at  $\delta$ 4.61 and 5.2 with a coupling constant of 5.5 Hz. Moreover the high field appearance of -NH<sub>2</sub> protons at  $\delta$  1.5 also indicates the C<sub>3</sub>-NH<sub>2</sub> group to be cis to the phenyl ring at C<sub>4</sub>- and hence cis stereochemistry of the  $\beta$ -lactam (VIII). Reaction of (VIII) with piperonal in refluxing ethanol produced the aldimine (IX) in high yield. This  $\ll$ -imino- $\beta$ -lactam (IX) was used as the Schiff base component which on annelation with phenoxyacetylchloride gave the desired di- $\beta$ -lactam (VI).

To ascertain the reproducibility of the above technique, the di- $\beta$ -lactam (XII) was prepared in high yield through the annelation of the Schiff base (X) with N-(2-oxoazetidino)acetic acid (XI). Further studies are being conducted for the synthesis of tri- and tetra- $\beta$ -lactams from suitably constituted synthons in our laboratory. As can be easily visualised these compounds obtained from N-(2-oxoazetidino)acetic acids are analogous to peptides obtained from  $\alpha$ -amino acids and hence shall be of academic as well as biological importance.

Elemental analysis on compounds IV-IX, XI and XII were in agreement with the structures.



## References

- 1. S.D. Sharma, G. Singh & P.K. Gupta, Indian J. Chem., 16B, 74 (1978).
- 2. S.D. Sharma and P.K. Gupta, Tetrahedron Lett., 4587 (1978).
- 3. S.D. Sharma, (Miss) Sunita and P.K. Gupta, Tetrahedron Lett., 1265 (1979).
- 4. Norio Yoshida, <u>Sankyo Kenkyusho Nempo</u>, <u>18</u>, 38(1966); C.A. <u>66</u>, 115506z (1967).
- 5. T. Kikuchi and S. Uyeo, Tetrahedron Lett., 3473 (1965).
- 6. W.W. Stewart, <u>Nature</u>, <u>229</u>, 174 (1971).
- A.K. Bose, M.S. Manhas, J.C. Kapur, S.D. Sharma and S.G. Amin, J. Med. Chem., <u>17</u>, 541 (1974).
- 8. B.G. Chatterjee and D.P. Sahu, Tetrahedron Lett., 1129 (1977).
- 9. J. Finkelgtein, K.G.Holden and C.D. Perchonock, <u>Tetrahedron Lett.</u>, 1629 (1978).
- 10. D.B. Bryan, R.F. Hall, K.G. Holden, W.F. Huffman and J.G. Gleason, J. Am. chem. Soc., <u>99</u>, 2353 (1977).

Acknowledgement: We are thankful to CSIR, New Delhi for the award of SRF to (PRG) and to Dr. S.S. Bari for the record of NMR spectra.

(Received in UK 11 June 1980)